Quantum mechanical solver for confined heterostructure tunnel field - effect transistors
نویسنده
چکیده
Submitted for the MAR14 Meeting of The American Physical Society Quantum mechanical solver for confined heterostructure tunnel field-effect transistors DEVIN VERRECK, imec, KU Leuven, MAARTEN VAN DE PUT, BART SOREE, imec, Universiteit Antwerpen, ANNE VERHULST, imec, WIM MAGNUS, imec, Universiteit Antwerpen, WILLIAM VANDENBERGHE, University of Texas at Dallas, GUIDO GROESENEKEN, imec, KU Leuven — Although the tunnel field-effect transistor (TFET) is a promising candidate to replace the MOSFET in low-power applications because of its sub-60mV/dec subthreshold swing (SS), on-currents are typically too low. Introducing a heterostructure of IIIV materials at the tunnel junction enables higher on-currents, but the influence of quantum effects like size confinement is poorly understood. We therefore present a ballistic quantum transport formalism, combining for the first time a novel heterostructure envelope function formalism with the multiband quantum transmitting boundary method, extended to 2D potentials. First, the subband modes are obtained in the contacts, where the potential is assumed constant in the transport direction. Next, the modes are injected one by one into the device. Finally, the resulting transmission probabilities are integrated, weighted with a Fermi-Dirac distribution, to obtain the current. This multiband formalism has been implemented for the 2-band case. First, heterostructure diodes were simulated, showing a decrease in transmission probabilities for thin devices. Next, p-n-i-n heterostructure TFETs were studied. It was found that the improved gate control in thin devices counteracts the size confinement. Devin Verreck imec, KU Leuven Date submitted: 15 Nov 2013 Electronic form version 1.4
منابع مشابه
Analysis and study of geometrical variability on the performance of junctionless tunneling field effect transistors: Advantage or deficiency?
This study investigates geometrical variability on the sensitivity of the junctionless tunneling field effect transistor (JLTFET) and Heterostructure JLTFET (HJLTFET) performance. We consider the transistor gate dielectric thickness as one of the main variation sources. The impacts of variations on the analog and digital performance of the devices are calculated by using computer aided design (...
متن کاملAnalysis and study of geometrical variability on the performance of junctionless tunneling field effect transistors: Advantage or deficiency?
This study investigates geometrical variability on the sensitivity of the junctionless tunneling field effect transistor (JLTFET) and Heterostructure JLTFET (HJLTFET) performance. We consider the transistor gate dielectric thickness as one of the main variation sources. The impacts of variations on the analog and digital performance of the devices are calculated by using computer aided design (...
متن کاملModeling of Manufacturing of Field-Effect Heterotransistors without P-n-junctions to Optimize Decreasing their Dimensions
It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions framework their system). Due to the optimization, one can also obtain increas...
متن کاملThe Nanoelectronic Modeling Tool (NEMO) and its Expansion to High Performance Parallel Computing
Material variations on an atomic scale enable the quantum mechanical functionality of devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs). The design and optimization of such heterostructure devices requires a detailed understanding of quantum mechanical electron transport. NEMO...
متن کامل